Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nutrients ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-1997734

ABSTRACT

BACKGROUND: COVID-19 lockdowns had a significant impact on people's health, triggering levels of anxiety, perceived stress, and changes in food and nutritional status. OBJECTIVES: To assess the changes in dietary habits, metabolic syndrome (MetS) and liver parameters before and after the COVID-19 lockdown according to changes in intrahepatic fat content in adults with non-alcoholic fatty liver disease (NAFLD) and MetS. DESIGN: Pre- and post-lockdown observation of the COVID-19 lockdown on fifty-nine 40-60-year-old participants with MetS and NAFLD, in a parallel group, randomised experiment intended to treat NAFLD. METHODS: Anthropometrics, liver and MetS biochemical parameters, intrahepatic fat content by abdominal magnetic resonance imaging, and dietary assessment using a validated 148-item Food Frequency Questionnaire were collected pre-COVID-19 lockdown and post-lockdown. RESULTS: COVID-19 lockdown led to negative changes in the liver of patients with NAFLD and MetS, with weight gain and increases in glycemia, ALT and intrahepatic fat content post lockdown. Participants with worsened liver status had low consumption of fibre, cheese, nuts and coffee, and high consumption of sweets and pastries. Participants who improved liver status ameliorated ALT values, waist circumference, and intrahepatic fat content, assessed by magnetic resonance imaging post-lockdown. CONCLUSIONS: The maintenance of healthy lifestyle habits is vital, especially for populations with NAFLD and MetS, to reduce unhealthy lifestyle patterns displayed during lockdown.


Subject(s)
Body Fat Distribution , COVID-19 , Liver , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Adult , COVID-19/prevention & control , Communicable Disease Control , Feeding Behavior , Humans , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging , Metabolic Syndrome/complications , Metabolic Syndrome/diagnostic imaging , Middle Aged , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnostic imaging
2.
Mol Metab ; 53: 101262, 2021 11.
Article in English | MEDLINE | ID: covidwho-1253402

ABSTRACT

OBJECTIVE: Obesity, in particular visceral obesity, and insulin resistance emerged as major risk factors for severe coronavirus disease 2019 (COVID-19), which is strongly associated with hemostatic alterations. Because obesity and insulin resistance predispose to thrombotic diseases, we investigated the relationship between hemostatic alterations and body fat distribution in participants at risk for type 2 diabetes. SUBJECTS: Body fat distribution (visceral and subcutaneous abdominal adipose tissue) and liver fat content of 150 participants - with impaired glucose tolerance and/or impaired fasting glucose - were determined using magnetic resonance imaging and spectroscopy. Participants underwent precise metabolic characterization and major hemostasis parameters were analyzed. RESULTS: Procoagulant factors (FII, FVII, FVIII, and FIX) and anticoagulant proteins (antithrombin, protein C, and protein S) were significantly associated with body fat distribution. In patients with fatty liver, fibrinogen (298 mg/dl vs. 264 mg/dl, p = 0.0182), FVII (99% vs. 90%, p = 0.0049), FVIII (114% vs. 90%, p = 0.0098), protein C (124% vs. 111%, p = 0.0006), and protein S (109% vs. 89%, p < 0.0001) were higher than in controls. In contrast, antithrombin (97% vs. 102%, p = 0.0025) was higher in control patients. In multivariate analyses controlling for insulin sensitivity, body fat compartments, and genotype variants (PNPLA3I148MM/MI/TM6SF2E167kK/kE), only protein C and protein S remained significantly increased in fatty liver. CONCLUSIONS: Body fat distribution is significantly associated with alterations of procoagulant and anticoagulant parameters. Liver fat plays a key role in the regulation of protein C and protein S, suggesting a potential counteracting mechanism to the prothrombotic state in subjects with prediabetes and fatty liver.


Subject(s)
Body Fat Distribution , COVID-19/complications , Diabetes Mellitus, Type 2/epidemiology , Fatty Liver/epidemiology , Hemostasis/physiology , Aged , COVID-19/blood , COVID-19/physiopathology , Cohort Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Fatty Liver/blood , Fatty Liver/diagnosis , Fatty Liver/physiopathology , Female , Humans , Insulin Resistance/physiology , Liver/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Protein C/analysis , Protein C/metabolism , Protein S/analysis , Protein S/metabolism , Randomized Controlled Trials as Topic , Risk Factors , SARS-CoV-2/pathogenicity
3.
Scand J Med Sci Sports ; 30(12): 2352-2363, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-740266

ABSTRACT

This pilot study compared the effects of acute high-intensity intermittent exercise (HIIE) and moderate-intensity continuous exercise (MICE) on post-exercise VO2 , fat utilization, and 24-hours energy balance to understand the mechanism of higher fat mass reduction observed after high-intensity interval training in post-menopausal women with overweight/obesity. 12 fasted women (59.5 ± 5.8 years; BMI: 28.9 ± 3.9 kg·m-2 ) completed three isoenergetic cycling exercise sessions in a counterbalanced, randomized order: (a) MICE [35 minutes at 60%-65% of peak heart rate, HRmax ], (b) HIIE 1 [60 × (8-s cycling-12-s recovery) at 80%-90% of HRmax ], and (c) HIIE 2 [10 × 1min at 80%-90% of HRmax  - 1-min recovery]. Then, VO2 and fat utilization measured at rest and during the 2 hours post-exercise, enjoyment, perceived exertion, and appetite recorded during the session and energy intake (EI) and energy expenditure (EE) assessed over the next 24 hours were compared for the three modalities. Overall, fat utilization increased after exercise. No modality effect or time-modality interaction was observed concerning VO2 and fat oxidation rate during the 2 hours post-exercise. The two exercise modalities did not induce specific EI and EE adaptations, but perceived appetite scores at 1 hour post-exercise were lower after HIIE 1 and HIIE 2 than MICE. Perceived exertion was higher during HIIE 1 and HIIE 2 than MICE, but enjoyment did not differ among modalities. The acute HIIE responses did not allow explaining the greater fat mass loss observed after regular high-intensity interval training in post-menopausal women with overweight/obesity. More studies are needed to understand the mechanisms involved in such adaptations.


Subject(s)
Energy Metabolism , Exercise/physiology , High-Intensity Interval Training , Lipid Metabolism , Obesity/metabolism , Overweight/metabolism , Oxygen Consumption , Postmenopause/physiology , Appetite , Blood Glucose/metabolism , Body Fat Distribution , Female , Heart Rate , Humans , Middle Aged , Perception/physiology , Physical Exertion/physiology , Pilot Projects , Pleasure , Pulmonary Gas Exchange
SELECTION OF CITATIONS
SEARCH DETAIL